平菇液体菌种培养条件的优化研究

梁永贤1、柴 洁1,2、王铸年1,2、王丽梅2,3

(1. 武威腾辉生物科技有限公司,甘肃 武威 733000; 2. 甘肃省武威市凉州区农业技术推广中心,甘肃 武威 733000; 3. 甘肃省武威市凉州区谢河镇农业技术推广站,甘肃 武威 733005)

摘要:以培养温度、起始 pH、最佳装液量、最佳培养时间为指标,采用 4 因素 3 水平正交试验,最终优选出的平菇液体菌种最适宜培养条件为温度 24 $^{\circ}$ 、起始 pH 6.5、装液量 240 L、培养时间 3 d。发酵罐最佳配方为: 玉米面 2%、麸皮 1.2%、红糖 1%、磷酸二氢钾 0.01%、硫酸镁 0.005%、酵母膏 0.25%。

关键词: 平菇; 液体菌种; 发酵罐; 培养条件

中图分类号: S646.1 文献标识码: A 文章编号: 1001-1463(2016)06-0013-03

doi:10.3969/j.issn.1001-1463.2016.06.005

Study on Optimization of Culture Conditions of Liquid Strain of Pleurotus ostreatus

LIANG Yongxian¹, CHAI Jie^{1,2}, WANG Zhunian^{1,2}, WANG Limei^{2,3}

(1. Wuwei Tenghui Biological Technology co., LTD, Wuwei Gansu 733000, China; 2. Liangzhou District Agricultural Technology Extension Center, Wuwei Gansu 733000, China; 3. Xiehe Town of Agricultural Technology Extension Station of Liangzhou District, Gansu Wuwei 733005, China)

Abstract: In order to explore the optimum culture conditions of *Pleurotus ostreatus*, ensure the cultivation quality and yield of *Pleurotus ostreatus*. The culture temperature, initial pH value, the optimal liquid loading quantity, optimum culture temperature indicators, the 4 factors and 3 levels orthogonal test. The final optimization of *Pleurotus ostreatus* most suitable culture conditions that temperature is 24 degrees, the optimum initial pH is 6.0, the optimum broth volume is 250 L, the optimum culture time is 3 days. The optimum formulation of the fermentation tank that corn flour is 2%, wheat bran is 1.2%, 1%, brown sugar is 1%, potassium dihydrogen phosphate is 0.01%, sulfuric acid magnesium is 0.005%, yeast extract is 0.25%.

Key words: Pleurotus ostreatus; Liquid strain; Fermentation tank; Cultivation condition

平菇是我国食用菌产业中投料量最大、产量最高、从业人数最多的主导品种,也是武威市目前主裁的食用菌品种(平菇、金针菇、杏鲍菇、海鲜菇)之一,产量占食用菌总产量的45%以上,足以说明其生产地位。由于广温性的平菇具有栽培品种优良、栽培技术成熟、集中于秋冬季栽培,消费群体稳定等特点[1],因此大部分的菇农从事食用菌生产都是从平菇开始的。但因其接种方式大都采用固体菌种,而固体菌种因为制种周期长、制作成本较高、程序繁琐、污染率较高等诸多缺点,制约了部分农户发展食用菌的积极性。为了探索平菇液体菌种的最佳培养条件,保证液体菌种栽培平菇的质量和产量,武威腾辉生物科技有限公司进行了平菇液体菌种培养条件优化研究,

以期为液体菌种的生产提供参考。

1 材料与方法

1.1 供试材料

供试平菇菌株为高产 8129,由江都市天达食 用菌研究所提供。

- 1.2 培养基配方
- 1.2.1 斜面培养基配方 马铃薯 20%、葡萄糖 2%、琼脂 2%, 水 1 000 mL^[2]。
- 1.2.2 摇瓶培养基配方 马铃薯 20%、葡萄糖 2%、磷酸二氢钾 0.1%、硫酸镁 0.05%、维生素 B_1 10 mg、水 1 000 mL。
- 1.2.3 发酵罐培养基配方 玉米面 2%、麸皮 1.2%、红糖 1%、磷酸二氢钾 0.01%、硫酸镁 0.005%。

收稿日期: 2016-01-10

基金项目: 甘肃省民生科技计划项目"农业有机废弃物循环利用研究与应用示范"(144FCMH014)部分内容

作者简介:梁永贤(1972—),男,甘肃武威人,农艺师,主要从事食用菌栽培技术研究与推广工作。联系电话:(0)18593006815。E-mail: gswwlzlyx@163.com。

1.3 摇瓶培养基和发酵罐培养基的制作

- 1.3.1 小摇瓶培养基的制作 每个三角瓶装培养基 500 mL,高压灭菌 30 min,冷却后在超净工作台中接种经过活化的母种菌块 4 块。黑暗静置 1~2 d,菌块萌发后 24 h 内置于往复式震荡机上培养 6 d。
- 1.3.2 大摇瓶培养基的制作 每个三角瓶装培养基 2 500 mL,高压灭菌 30 min,冷却后在超净工作台中接入经过培养的小瓶培养基 150 mL,然后置于大摇床震荡培养 3 d。
- 1.3.3 发酵罐培养基的制作 每个发酵罐装培养基 250 L,高压灭菌 60 min,冷却至 25 ℃时接入大摇瓶菌种 5 000 mL,通入经过过滤的空气,培养 3 d。

1.4 发酵罐菌种培养工艺的优化

- 1.4.1 发酵罐培养温度试验 试验设置 3 个温度处理,分别为 22、24、26 $^{\circ}$ 。起始 pH 6.0,每罐装液量 250 L,培养时间 3 d。观察并记录每个处理菌丝的生长情况,统计菌丝的生物量。
- 1.4.2 发酵罐起始 pH 试验 以液体培养基为基础,起始 pH 为 5.5、6.0、6.5。培养温度 24 $^{\circ}$ 、每罐装液量 250 L,培养时间 3 d。每处理重复 3 次,观察并记录每个处理菌丝的生长情况,统计菌丝生物量 $^{[3]}$ 。
- 1.4.3 发酵罐装液量试验 选用容积为 300 L 的液体发酵罐,装液量设 3 个处理,分别为 240、250、260 L,培养温度 24 $^{\circ}$ C,起始 pH 6.0,培养时间 3 d。重复 3 次,观察并记录菌丝的生长情况,统计菌丝生物量 $^{[4-5]}$ 。
- 1.4.4 发酵罐培养时间的试验 设置 3 个处理,培养 2、3、4 d。培养温度 24 $^{\circ}$ 0,起始 pH 6.0,每罐装液量 250 L,培养时间 3 d。重复 3 次,观察并记录菌丝生长情况,统计菌丝生物量。
- 1.4.5 正交试验优化 在单因素试验的基础上,对发酵罐培养的温度(A),起始pH(B),装液量(C)和培养时间(D)进行 4 因素3水平(L₀(3⁴))正交试验,试验因素及水平设计见表 1。每处理重复 3 次,观察发酵罐菌丝的生长情况,测定菌丝生物量。

表 1 正交试验设计

XI EXMEDI						
水平	温度 (℃)	起始pH	罐装液量 (L)	培养时间 (d)		
1	22	5.5	240	2		
2	24	6.0	250	3		
3	26	6.5	260	4		

1.5 发酵罐菌种培养基筛选

以筛选出的最适培养基作为试验的初始配方,发酵罐输入压力控制在 0.02 ~ 0.04 MPa,培养温度 24 ℃,起始 pH 6.0,每罐装液量 250 L,培养时间 3 d。对发酵罐培养基中玉米面 / 麸皮(a)、红糖(b)、磷酸二氢钾 / 硫酸镁(c)和酵母膏(d)的使用量进行 4 因素 3 水平(L₀(3⁴))正交试验。试验因素及水平见表 2。每处理重复 3 次。观察发酵罐菌丝的生长情况及发酵液的变化,测定菌丝的生物量及菌球数量。

表 2 发酵罐菌种培养基配方的正交试验设计

水平 (%)	玉米面 (%)	麸皮 (%)	红糖 (%)	磷酸二氢钾 (%)	硫酸镁 (%)	酵母膏 (%)
1	1.5	0.6	0.8	0.008	0.004	0.20
2	2.0	1.2	1.0	0.010	0.005	0.25
3	2.5	1.8	1.2	0.012	0.006	0.30

2 结果与分析

2.1 发酵罐菌种培养工艺的优化

2.1.1 发酵罐培养温度 由表 3 可知,当发酵罐的培养温度为 24 \mathbb{C} 时,平菇菌丝球的均匀度最高,菌球最大,生物量最高;当温度上升到 26 \mathbb{C} 时,菌丝球均匀度迅速下降,菌球变小,生物量极显著低于 24 \mathbb{C} 。

表 3 培养温度对平菇菌丝生长的影响①

温度 (℃)	均匀度	平均菌丝生物量 (g/kg)
24	+++	38.11 aA
22	++	35.79 bA
26	+	$34.75~\mathrm{cB}$

①+++++表示菌球均匀度逐渐提高,下同。

2.1.2 发酵罐的起始 pH 由表 4 可知,随着起始 pH 的升高,菌球均匀度提高,菌球增大,生物量增高;当起始 pH 达到 6.0 时,各项指标都达到了最佳,且显著优于其他初始 pH; 起始 pH 再升高,菌丝的各项指标都迅速下降,不利于菌丝的生长。

表 4 起始 pH 对平菇菌丝生长的影响

рН	均匀度	平均菌丝生物量 (g/L)
6.0	+++	38.73 aA
5.5	++	36.32 bA
6.5	+	34.75 cB

2.1.3 发酵罐装液量 由表 5 可知,发酵罐装液量 250 L时,菌丝生物量显著优于 240 L和 260 L;装液量为 260 L时,菌球大小和生物量都显著低于

装液量 250 L。考虑到发酵罐的利用率以及成本等方面,在实际生产中选择发酵罐的装液量以 250 L 为宜。

表 5 发酵罐装液量对平菇菌丝生长的影响

装液量 (L)	均匀度	平均菌丝生物量 (g/kg)
250	+++	38.57 Aa
240	++	36.45 bA
260	+	$36.29~\mathrm{cB}$

2.1.4 发酵罐培养时间 由表 6 可知,在培养初期,菌球逐渐增大,生物量很小;随着培养时间的延长,菌球会变小,变得更加均匀,生物量逐渐增加。当培养时间达到 4 d 时,菌丝出现老化现象,菌丝均匀度下降,菌球活力下降,菌丝生物量不会再增多。因此,最适发酵罐培养时间为 3 d。

表 6 不同培养时间对平菇菌丝生长的影响

培养时间 (d)	均匀度	平均菌丝生物量 (g/kg)
3	+++	38.29 aA
4	+ +	36.86 bA
2	+	$36.07~\mathrm{cB}$

2.1.5 正交试验优化 由表 7 可知,平菇液体菌种最佳培养条件为 $A_2B_3C_1D_2$ 。说明制作平菇液体菌种时,最适宜的培养条件为温度 24 $^{\circ}$ 、起始 pH 6.5、最适装液量 240 L罐、培养时间 3 d。

表 7 最佳发酵罐培养条件的正交试验分析

	W. WEXHIELD WITHOUT COMM.						
试验编号		起始pH (B)	装液量 (C)	培养时间 (D)	平均菌丝生物量 (g/kg)		
1	1	1	1	1	22.12		
2	1	2	2	2	38.12		
3	1	3	3	3	34.66		
4	2	1	2	3	35.76		
5	2	2	3	1	24.97		
6	2	3	1	2	38.44		
7	3	1	3	2	36.86		
8	3	2	1	3	36.97		
9	3	3	2	1	24.08		
K_1	91.08	94.61	95.54	70.14	t=291.98		
K_2	95.56	99.78	98.15	113.46			
K_3	96.54	97.54	96.67	102.55			
K_1	30.36	31.34	31.85	23.38			
K_2	31.85	33.26	32.71	37.82			
K_3	32.18	32.51	32.22	34.18			
R	5.46	5.17	2.61	43.32			

2.2 发酵罐菌种培养基配方

由表 8 可知, R 值从大到小依次为处理 d、处理 a、处理 b、处理 c, 处理 d(酵母膏)为最

表 8 发酵罐菌种培养基配方的正交试验结果

		因	素			
处理号	a (玉米 面/麸 皮)	b (红 糖)	c (磷酸二 氢钾 / 硫酸镁)	d (酵母 膏)	菌丝 湿重 (mg/100 mL)	рН
1	1	1	1	1	23.0	3.9
2	1	2	2	2	40.0	4.2
3	1	3	3	3	38.6	4.1
4	2	1	2	3	35.4	3.8
5	2	2	3	1	20.5	4.0
6	2	3	1	2	30.6	3.8
7	3	1	3	2	35.0	4.1
8	3	2	1	3	40.6	4.2
9	3	3	2	1	24.5	3.6
K_1	32.5	32.9	31.4	22.4		
K_2	28.2	32.4	30.6	35.1		
K_3	34.0	30.5	32.6	38.6		
R	5.8	2.4	2.0	16.2		

主要的影响因素,最佳组合为 $a_3b_2c_1d_3$,即最佳配方为玉米面 1.5%、麸皮 1.8%、红糖 1%、磷酸二氢钾 0.008%、硫酸镁 0.004%、酵母膏 0.3%。考虑到酵母膏成本较高,可选择与之接近的组合 $a_1b_2c_2d_2$ 用于以后的生产,即配方为玉米面 2%、麸皮 1.2%、红糖 1%、磷酸二氢钾 0.01%、硫酸镁 0.005%、酵母膏 0.25%。

3 小结

试验结果表明,在试验设置条件范围内,平 菇液体菌种培养的最适温度为 24 ℃,最适起始 pH 为 6.5,最适装液量为 240 L,最适培养时间为 3 d。发酵罐最佳配方为玉米面 2%、麸皮 1.2%、 红糖 1%、磷酸二氢钾 0.01%、硫酸镁 0.005%、酵 母膏 0.25%。

参考文献:

- [1] 陈丽新,陈振妮,董桂清,等.适宜桉树皮栽培的广温型平菇优良菌株筛选[J].食用菌,2013(6):23-25.
- [2] 彭杏敏,方芳芳,徐 凯,等.十七个高温平菇菌株 比较试验[J].食用菌,2013(4):25-26.
- [3] 陈 辉,赵 静,张津京,等. 简易杏鲍菇液体菌种培养装置及其培养效果[J]. 食用菌,2015(3):9-12.
- [4] 韩 冰, 钟丽娟, 陈 超, 等. 滑菇液体培养条件的研究[J]. 食用菌, 2013(2): 16-17.
- [5] 薛变丽,段 超,李 波,等. 工厂化北虫草液体菌种培养优化及栽培试验[J]. 食用菌,2015(2):10-12.

(本文责编:杨 杰)